If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12z^2=90
We move all terms to the left:
12z^2-(90)=0
a = 12; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·12·(-90)
Δ = 4320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4320}=\sqrt{144*30}=\sqrt{144}*\sqrt{30}=12\sqrt{30}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{30}}{2*12}=\frac{0-12\sqrt{30}}{24} =-\frac{12\sqrt{30}}{24} =-\frac{\sqrt{30}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{30}}{2*12}=\frac{0+12\sqrt{30}}{24} =\frac{12\sqrt{30}}{24} =\frac{\sqrt{30}}{2} $
| 15m=9 | | 2/3(5x-9)-4/3x+2=16 | | 90+9x=180 | | 6x+50=18x+48 | | -3x^2-0.75x+1.5=0 | | 3k-(k+4)=4(k-2)-6 | | 22x+90-6=180 | | -12x-3=8x+2 | | 5x-5+30+3x=145 | | 3/4v-3=4 | | 8•g=76 | | 5(-3)-y=-4 | | s/7+49=59 | | 6n-3=2 | | -4x(2x-9)=132 | | 48=-3x^2+24+x | | e/3.6=1.2 | | -8x-4=-7x+26 | | 4/9w+9=11 | | 2b+6b=11 | | 4(x-4)-(6+x)=3x-4 | | 9x^2-19x-10=0 | | 700-x=3*x | | 7m+30=40 | | 6•8=h | | -7s-4s-2s+-7s=-20 | | 5^x+1=8 | | 17b-9b+4b=-12 | | 3m+6=15m= | | 17b-9b+4b=-121 | | (2x/3)+(x/2)=7 | | 10+2/5x=20 |